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The plane problem of steady nonsymmetric two-sided inflow of ground water 
to a drain of trapezoidal cross section with shielded slopes in a zero-head stra- 

tum with an impervious base is solved in hydrodynamic formulation by confor- 

ma1 mapping. A system of equations is obtained for the unknown parameters. 
The qualitative analysis of the derived solution shows that the branches of the 
depression curve tend to become parabolic with increasing distance from the 

channel, and the flow is defined with ever greater exactness by relationships of 
the hydraulic theory of zero-head filtration.When thewaterproof strata is moved 
downward to infinity, the parabolic asymptotics of the depression curve branches 

is replaced by a logarithmic one. In the case of one-sided inflow (of water) (in 
the presence of a watertight stratum) the opposite branch of the depression curve 
has a horizontal asymptote which it approaches in conformity with an exponen- 

tial law. 

Slopes of drainage channels of trapezoidal cross section have to be sometimes shiel- 

ded because of insufficient firmness of the ground. In such cases drainage takes place 
through the channel floor. Such flow is diagrammatically shown in Fig. 1 for the case 

in which the layer of soil undergoing drainage is supported by a waterproof stratum, and 

the drainage rates from left and right are, generally, different, i.e. the flow is nonsym- 

metric, 
We introduce the complex potential o = q $ i$, where 9 is the potential of filt- 

ration rate and 9 is the stream function. If we assume that cp /cc* = 4 [.4*w~9 = 0, 

then region w is represented by the half-band with the slit AEA’ (Fig. 2, a) to whose 

tip corresponds in region z a neutral point lying on line ED of separation of streams ; 
the rate of flow at that point is zero. We shall deal below with reduced parameters z 
and o related to the similar physical quantities z’ and 0’ by formulas 

z = 2) I 1, w =-- o’ I kl (1) 

where 1 is the half-width of the channel floor and k is the filtration coefficient. 
We denote by Q the reduced rate of filtration through the channel floor per unit of 

its length per unit of time. The rates of flow from the left and right are denoted, respec- 

tively, by (1 -x)Q and XQ (O<x(l). Mapping region o onto the half-plane Jm 5 2 

0 (Fig. 2, b), we obtain 
r s 1 

o = - M S2 (z) do + iQ, 62 (t) = 
(a - r)(a’ + t) V/r”-- 1 

= s (2) 

The term vnl implies the branch that is positive when. r > 1 . 
Equating the increments of function 61 and of the integral in formula (2), in passing 

through the points Aand A’, we obtain 
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M = (1 - x) -$ [Q,(a)]-1 = (1 - x) $(u + a’) ‘t/a” - 1 = (3) 

x$(a+a’)Va’a-1 

from which 
at2 = u2 + (a2 --l)(P-I), h = (1 - x) / x 

The calculation of the integral in (2) yields for w along boundary sections the following 
formulas : 

-i[(l-x)arccosa+xarccos(-fl)], -I<%(1 

(I- x) arch a +x arch (- b), -a’<c<--1 

(I-x)arch(-a)+xarchp-in, l<C<a 
(5) 

(1 -x) archa + x arch p - ixn, L<- a’, 6>a 

1 --a6 a=-, B 1 +a’5 
a--5 =-G-r 

Let us consider the complex filtration rate w = w, - iw, = do / dz and its con- 

jugate physical filtration rate i8 = W, f iw,,. First, we note that Iw~c,c~ = 00, 

IwIA,A~,E = 0. The quantity Iwl attains its minimum at some point F of the channel 
floor CC’. Assuming that within sections CF and CF’ its variation is monotonic we 
find that the semi-infinite slit CFC’ along the positive imaginary semiaxis (Fig. 3, a) 

corresponds in plane w to segment CC! The similar assumption about the behavior of 
Iw 1 along sections dE and A’E shows that the watertight bearing stratum is represen- 

ted in the plane E by the slit AMEM’A’ along the real axis. 

The assumption that quantity Iw 1 varies monotonically along the slopes implies that 
WB,B~ = 0, with the tangents of both branches of the depression curve at the points B 
and B’ emerging horizontally through the slopes. 

In fact,if,for instance,the second of possible Variants of behavior of flow rate S WB = 
sin nCk4”e was realized at point B with the left-hand branch of the depression curve 

tangent to the slope, then the inequality ap / as = sin ~$3 - 1 ED \ < 0 for i ( C < b 

must be satisfied *hen the indicated assumption and formulas 

1 w 1 BC = --dip 1 as = -ap 1 as - ay 1 as = -ap I as -I- sin 210 

where p is the pressure reduced with respect to the specific weight of water and s is 

the basis vector directed downward along the slope, are satisfied. 
Thus the realization of the considered possibility requires the artificial creation and 

maintenance throughout the flooded section of the slope of vacuum that would increase 

with depth, reaching its maximum at point C. However, drains work under conditions 

of free inflow with the pressure at section CC’ equal to the sum of atmospheric pressure 

and the water head in the channel. 
The region of function 1 / w which results in the inversion of the hodograph region 

with respect to circle 1 w 1 = 1, is a polygon with rectilinear boundaries (Fig. 3, b) . 
Its conformal mapping onto the half-plane Im 5 > 0 (Fig. 2, b) yields 

1 dz 

w(C) = alw 
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W(z) = p CT) w, w 
(T- a)(T +a’) (+- 1)“‘-’ I(%--b)(T+ b’)]‘+’ = = 

P (.t) = (a - m) (z + m’) (.t - r) (z + r’) (T - f) = e c,? (cg = 1) 
n=4 

We select in the considered half-plane Im 5 > 0 that of the branches of function 

W (5) which is positive for 5 > m, then N > 0, since 1 / w > 1 I wM when 

5 > l?L. The representation of function W (T) in terms of function W, (‘t) which is 
analytic at point r = a (see (2)) will be used below. Note that J$‘, (T) > 0 for 

l<z<m. 
On the basis of (6) we have 

We select here j, = 1 and,since z (1) = - 1 and w (1) = 00, obtain 

z (5) = - 1 -t N 5 W(z) [o (5) - o(z)] dz (7) 
1 

Formulas (7) and (2) represent the parametric solution of the problem that (for specified 
Q and X) contains 11 unknown parameters: M, N, a, a’, b, b’, m, m’, r, r’ and f. 
Two of these: M and a’ are expressed in terms of parameter a in formulas (3) and (4) 
derived from the analysis of region o; the remaining nine relationships are established 
with the use of known geometric elements of regions 1 / w and Z. 

We pass into the plane 1 / w from section ME to section EM’ along the semicircle 
rR of fairly large radius R whose center is at the coordinate origin and along which 

‘t = ReiY. Using (6) and the expansion of function w (7) in the neighborhood of point 

‘C = 00 in the Taylor series [l] 

W(z)=l+-$+--$-O(l), c=c,+a-a’+(1+8)(b-b’) 

we obtain 

1 
w(-- 

--$- = N \ W (z)dz = N [[iReiT+ ic -t_ $ie-‘Y?(l)]dy= 

rR 0 

- N(2R- inc) + 0 (+) 

Passing here to the limit R + 00 and taking into consideration that the increment of 

the imaginary part of function 1 / w is zero, we conclude that 

c = a _ a’ + (1 + e)( b - b’) - m + m’ - r + r’ - f = ’ (8) 

The imaginary part of function 1 / w has at points A and A’ increments equal unity. 

On the strength of this we establish two more relationships 

nNL+‘,(a) =: nN I P (a) I 
= (a + a') (a2- 1)“8-e [(a - b) (a + V)]‘+’ 

1 (9) 

TCN 
I P(a')l 

(a + ~')(a'~ - 1)"2-e [(a'- b')(a' + b)]l+e = 
1 (10) 
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It follows from Fig.3* b that the imaginary part of function 1 / w when traversingsec- 
tion CL? and passing over to section AB varies from 0 to -4 ,* i.e. 

r. 
IrnNpv(z)dz. = -1, b<c<a 

1 

The integral in the left-hand side of the equality does not exist in the conventionalmea- 
ning owing to the singulatity of function IV (r) at point r = b. We determine it by 
excluding from the integration interval the small neig~orhood (b - E, b i_ E) ofpoint 
r = b , as is done in similar cases [l], and substituting for it the semicircle ??b of small 

radius F, Successive transformations with passing to the limit E -+ 0 yield the equation 

N sin iT0 1 (11) 

W,(z) = { W (z) (.t - b)“fe 1 

We similarly establish one more formula thaf determines the increment of the imaginary 
part of function 1 I w from point C’ to section A’B’ . We have 

N sin 3X0 (12) 
Wb, (t) = 1 W (z) (z + b’)@ J 

The condition for CF = C’F in the plane 1 / w of the form 

i ~~(~)~sign(~-~)~~ = 0 
-1 

(13) 

Owing to the analyticity of function 1 / w , formula (13) is the corollary of relation- 

ships (8) - (12), and can be used as a test of calculations. 

Let us revert to region Z. Setting in (7) 5 = -1 and z = 1 , and using (13), we 
obtain 

N { ~(~)~(~~~~ = 2 (14) 
-1 

The derivation of the following two equations is based on the dependence V, = - \p -+ 
@) -/- _pa + H (p, is the reducedatmospheric pressure and H is the depth of the wa- 
ter layer in the channel). For points B and B’ at which p = p,, - hk. [Z] (hk isthe 

height of capillary rise of water in the soil) that dependence of the basis of (7) is of the 
form 

b WbP) U’@, b) 
N sinne\ (b_zJr+B dr = - q(b) -+ H + hk 

‘i 

@ @It Sal = (P (Sl) - cp (ss)) 

N sin no 
b’ w, (T) CI, (- z, - b’) s (b’ - t)l+’ 

dt=--(-bb’)+H+hk 
1 

(15) 

Functions Wb (r) and wb, (r) are determined in (11) and (12).Function ‘p (‘6) appear- 
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ing in (14) - (16) is represented along the related integration intervals by formulas (5) ; 
owing to its analyticity at points R and B’, integrals in (15) and (16), as well as in( 11) 

and (12) are convergent (with singularities of integrands of order 0 < .I). 
The closing equation for parameters is based on the specification of the height 7’ of 

the channel floor above the watertight stratum. Since along the latter y = - 7’, hence 
in conformity with (7) 

We select skgment [I, a + E] of the real axis of plane 5 as the integration path and 
substitute in it the neighborhood (a - E, a + E) of point ‘t = Q, where the integral 
is divergent, the semicircle I‘, of radius E. In region z this corresponds to the passing 

of slope CN and of some section of the left-hand branch of the depression curve adjoin- 
ing the slope and passing to the watertight stratum. The transformations of the integral 
finally yield the sought equation which in the previously used notation may be presented 
in the form 

nclgntf + ’ 
A (TJ dT x IT’ I- Ii .+ h, - cp (6)] 

(T - b)‘+‘(a - T) = (1 - xl v 
(1,-u 

‘l(T) = 
1 I/t’, lb) - if’,, (T)] (a - T) Qa (T) (T - by+” - 

W” (a) Q,(a) -- 

W,(b) -@_q+ gd.&_ 1 Q, (7) 
wa (Q) Qa (a) 1 

(r - b)1+o 

Note that the integrand in (17) is analytic when r = a , while for z -2 b it has an 
integrable singularity of order 8. 

Integration with respect to 5 in the opposite direction, i.e. from i to --a’ - E, which 
in region z corresponds to passing from point C over the right-hand side branch of the 

depression curve to the watertight stratum,results in a formula which can be derived from 
(17) by transposing parameters a and a’, b and b’, and substituting x for 1 - x . A 
similar transposition transforms formula (9) into (lo), (11) into (12), and (15) into (16) 
or vice versa. Owing to the analyticity of function z ( 5) this relationship is a corollary 

of Eq. (17) and conditions Im z;= 0 on CC’ and AA’ It can be used for testing cal- 
culations. 

Formulas (8) - (12) and (14) - (17) form a system of equations relative to parameters. 
The direct determination of these is very difficult owing to the complexity of the system. 

In calculations it is possible to specify, for example, parameters a, b and 6’ and deter- 
mine parameter a’ with the use of equality (4). Then, by eliminating the quantity N 
from the system of Eqs. (8) - (12) with the use of (14), we uniquely determine coeffici- 
ents co, . . ., c4 of the polynomial P (7). In such semi-inverse procedure the three geo- 
metric parameters I’, yg and yo.are “floating”; their values are obtained as a result of 

calculations. 
The complex parameteric equation of the left-hand branch AB of the depression 

curve, obtained from formula (7), is of the form 1 (181 

z (5) = - Ne-ixO 
” W,(r) a (T, b) 
\ 

dr - @ (h 5) ctg J-dJ + N 
[ 

w,(b) . 

i 
(b - T)l+o 8(5-b)’ - ’ 1 - 

N 
’ I+‘, (b) @ (b, 5, 

c 
_--b;~(r)O(” ‘) dt, b< f< a 

b 
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The reciprocal transposition of parameters a and a’ and b and b’ in (18) yields the 

equation of the right-hand branch of A’B’ when b’ < 5 ( a’. 
I.,et us investigate the properties of flow in the neighborhood of point A remote from 

the channel. Taking into account (2) and (6) we can write 

Using (3) and (9) with 5 z a , we obtain 

d-Q FNW, (a) 

d02=- MO,(a) =- 
1 63 

(I--x)Q' ‘= -2(1-x)Q 

When 5 z a , we have in accordance with (2) o z MSZ, (a) ]n (a _ 5) . Taking 
this into consideration and restricting the last expansion to its principal term, we otain 
the formula 02 

ZS- 
2(’ --x)Q 

for F,sU (19) 

Thus at a reasonable distance from the channel the effects of its geometrical details 

on the stream structure are smoothed out, and because of (19) the stream there is close 
to a zero-head one over the watertight stratum in the direction of a horizontal drain 
slit ( [2], Sect. I I). It was rioted there that the hydrodynamic model of such flow coin- 
cides with the hydraulic one in some of its characteristics (the parabolic shape of the 
depression curve and the formula for the flow rate). The considered here flow fits with 
increasing accuracy in the hydraulic theory with increasing distance from the channel. 

Thus for the left-hand branch of the depression curve we obtain in the first approxima- 
tion rJs x 2 (i- x)Qlrl for ZJZu (20) 

which is in agreement with (19). 

The course of derivation of Eq. (17) shows that when 5 + a the length of the hori- 
zontal projection of equipotential lines tends to the constant limit (i- x)Q / 2. From 
this with allowance for (20) we conclude that with increasing distance from the channel 

the equipotential lines approach vertical straights. 
We note certain particular cases. 

1”. The symmetric flow. This case is derived from the considered above 
when x = r/r, e = u’, b = b’, m = m and r = r’ (the second equality is the corol- 

lary of the first and of (4)). It follows from (8) that f = 0. Formulas (lo), (12) and 

(16) are identical to formulas (9), (11) and (15). respectively, while equality (13) is iden- 
tically satisfied. Functions 61 (z) and W (T) which appear in formulas (2) and (7) now 

assume the form 1 
a(T) = w (Z) = 

7 (r2 - d) (r2 - 9) 

(a2 - T2) vn ’ (~2 - a2) (~2 _ 1)‘/.-8 (~2 _ b2)l+e 
(21) 

For the six remaining unknown parameters M, N, a, b, m and r we have the systemof 

Eqs. (3). (9), (ll), (14), (15) and (17). The last of these can be replaced by a simpler 
one which determines segment DE that in this case lies on the axis of symmetry which 
is the axis of ordinates. On the basis of (2). (7) and (21) and taking into account that on 
DE, 5 = to, 0 < u < a, V we obtain 

ca 

NQ s (m2 + u) (r2 + u) 
o ( u2 + u) (1 + IL~)“~-~ (b2 + I#+~ X [archa-arch (avz)]d,, =‘2%T 
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2”. The one-sided inflow. This scheme may be considered as the limit of 
the flow asymmetry in which the filtration flow rate of the channel depends exclusively 

of inflow from one side, for instance, from left, although part of the stream in the neigh- 
borhood of the watertight stratum passes then under the channel and reaches it only in 

the reverse motion. The stream dividing line ~$3 coincides with the right-hand branch 

of the depression curve A ‘B’C’ ; as the limit streamline that branch becomes now an 

extension of the watertight stratum. Since points E and M’ coincide with point A’, 

region o is converted into a half-band and the slit A’M’E in region 1 / w vanishes. 

Formulas for functions o ,I / w and z are derived from corresponding relationships 
established in the general case by passing to limit for x - 0, and a’ ---) k . As the re- 
sult we have 

M= Qda"--1 1 
Q(z)= (22) 

rc ’ (a -z) v/22 

w (Z) = 
(Z -m) (Z --r) (z + r’) (z -0 

(Z-a)@?--I) “A [(Z - b) (T + by’+e 

In the system of equations defining parameters Eq. (10) loses its validity, the first ofequa- 
lities (22) supersedes (3), and formula (8) becomes 

nN [a - m - r + r’ + f - (1 + O)(b - b’)] = 1 

In remaining equations there are no coefficients containing parameters a’ and m”, and 

x = 0 is to be set in (17). 

In accordance with (2) and (22) the following relationship 

Q 
Y (6) = - 9, (5) + H $- h, = 7 arch s +H+$, b',(t<m 

is satisfied along the right-hand branch A’B’ of the depression curve, where p = pa - 

h,, hence the branch has in this case a horizontal asymptote Y = Y,, and 

Yen =;;EY (0 = $ arch a + H + h, 

It can be further shown that along A’B’ at some distance from the channel Y,-- Y zz 

a ,-“I2 0 (a,, and a, are positive constants), i.e. the depression curve slope decreases and 
the flow is virtually absent. 

It is expedient to substitute for Eq. (17) a simpler formula relating to the finite incre- 
ment Y, 3- T of the ordinate Y at the circumvention of point A’ to the corresponding 
increment of the integral in formula (7). Such relationship may be presented in the form 

QN@-1=+ arch a + T + H + h, 

3”. Draining of a stratum of unbounded thickness. When the water 
tight stratum lies very deeply so that its effect on the flow to the drainage channel can 
be neglected, we have the scheme of a stratum of unbounded thickness which is obtained 
by passing to limit a, a’ ---) 00. We assume a uniform flow of ground water to the drain 

from all directions, i.e. that the flow is symmetric about the Y-axis and x = 1/2 . We 
thus have a variant of the particular case considered in 1” for a = 00. The solution is 
of the form 
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- -$ arch < + iQ 

c 

2 = N 
s 

W (z) (0 (5) -o(z)] dz, W (z) = 
z (22 - 9) 

1 
(z" - 1p-e(t2 _ b2)148 

(24) 

For the three parameters N, b and r we have the following system of equations (to which 

in the general case correspond Eqs. (ll), (14) and (15) ) : 

N sin n0 
W, 6) - W, (b) w, (b) 

(b-#+e dz-fj(b-IJe =I 1 1 IT (72 - 9) wb (‘) = (~2 _ 1 f/t-8 (b + ,)I+0 

(25) 

z (r2 - +) arcsin Z 
_ r2)“Z-0 (b2 _ ~2)1+0 

dz=x 

N sin n0 
’ W,(r) (arch b - arch z) s dz = arch b + % (H f hk) 

1 
(b - z)‘+~ 

The third equation of system (25) may be used for the determination of parameter b af- 

ter elimination from it of N and r with the use of the first two equations. 
At some distance from the drain, i.e. for considerable 5, we have in accordance with 

(24) the following relationships : 

0 (6) = - (Q / n) In 61 w (z) = 1 + 0 (T-z), 

dz 1 
do = w l+<@ ( ) 

+~5.W(r)dr=N,+NZ+O(~)=N,-N~-‘YlQ 

co 

and, consequently, 
NQ -no/Q zzN,o+,e (26) 

For the right-hand branch of the depression curve along which o = cp = - y this for- 

mula becomes NQ 
x+iy--,--Noy+ne *u/Q 

which implies that NO = -i; separation of the real part yields for that branch 

(27) 

The comparison of (27) with (20) shows that at a fairly considerable distance from the 
channel the parabolic asymptotics of the depression curve branches is superseded by a 
logarithmic one when the depth of the watertight stratum increases. This reduces the 
rate of increase of the depression curve ordinates, which evinces the supporting action of 

the watertight stratum on the filtration flow. The effect of the watertight stratum can 

be appraised by using the scheme of one-sided inflow. Such scheme with essentially dif- 

ferent flow properties in the neighborhood of points A and A’ is only possible when the 

watertight stratum lies at a finite depth when these two points are separated. This sepa- 
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ration vanishes with increasing depth of that stratum and, in accordance with (23), we 
have Iim ya, --f 35 when a --. 00, which means that the ordinate of the right-hand branch 

of the depression curve increases indefinitely. At the limit r-t 03 the pressure heads 

on the left and right of the drain tend to become equal at infinity (since they are both 
infinitely great), and the stream becomes two-sided and symmetric. 

In concluding we would point out two hydrodynamic models similar to the one consi- 

dered here, which are used in [3, 43. In the first of these [3] the symmetric flow of ground 

water to a trapezoidal channel with permeable slopes with zero depth of water in it was 
considered. The second model described in [4] differs from the present one only by that 
instead of a channel it has a horizontal Joukowsky slit. Such difference should be im- 
portant only in a certain neighborhood of the drain. If one takes into consideration that 
the solution obtained in [47 is considerably simpler than the solution derived here, it 
would appear that after appropriate correction it could be useful in calculations of the 
described flow. 

The problem considered here was proposed by 6. P. Ruplis, a collaborator of the Lith- 
uanian Agricultural Academy, to whom the authors are deeply grateful. 
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